Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 36(3): e4859, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285793

RESUMO

The magnetic susceptibility of tissue can provide valuable information about its chemical composition and microstructural organization. However, the relation between the magnetic microstructure and the measurable Larmor frequency shift is understood only for a few idealized cases. Here we analyze the microstructure formed by magnetized, NMR-invisible infinite cylinders suspended in an NMR-reporting fluid. Through simulations, we scrutinize various geometries of mesoscopic Lorentz cavities and inclusions, and show that the cavity size should be approximately one order of magnitude larger than the width of the inclusions. We also analytically derive the Larmor frequency shift for a population of cylinders with arbitrary orientation dispersion and show that it is determined by the l = 2 Laplace expansion coefficients p 2 m of the cylinders' orientation distribution function. Our work underscores the need to account for microstructural organization when estimating magnetic tissue properties.


Assuntos
Fenômenos Magnéticos , Tecidos , Imageamento por Ressonância Magnética , Tecidos/diagnóstico por imagem , Tecidos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...